$fn = 50; face_width = 14; bevel_margin = 1; cube_width = face_width + (2 * bevel_margin); face_depth = cube_width / 2; fd = face_depth; pip_radius = 1.5; pip_spacing = face_width / 3; ps = pip_spacing; difference() { minkowski() { cube(face_width, true); sphere(bevel_margin); } // I want to take advantage of OpenSCAD's x-y-z dot notation for vectors // Face 1 is on top (+z), clockwise 1-2-3, (+y,+x) // Faces 4-5-6, will then be (-x, -y, -z) // Faces 2 & 3 point together to face 6 // a wall of face 6 is against face 5 // Face 1 translate([0, 0, fd]) sphere(pip_radius); // Face 2 translate([ps, fd, -ps]) sphere(pip_radius); translate([-ps, fd, ps]) sphere(pip_radius); // Face 3 translate([fd, ps, -ps]) sphere(pip_radius); translate([fd, 0, 0]) sphere(pip_radius); translate([fd, -ps, ps]) sphere(pip_radius); // Face 4 translate([-fd, ps, ps]) sphere(pip_radius); translate([-fd, ps, -ps]) sphere(pip_radius); translate([-fd, -ps, ps]) sphere(pip_radius); translate([-fd, -ps, -ps]) sphere(pip_radius); // Face 5 translate([ps, -fd, ps]) sphere(pip_radius); translate([ps, -fd, -ps]) sphere(pip_radius); translate([0, -fd, 0]) sphere(pip_radius); translate([-ps, -fd, ps]) sphere(pip_radius); translate([-ps, -fd, -ps]) sphere(pip_radius); // Face 6 translate([ps, ps, -fd]) sphere(pip_radius); translate([ps, -ps, -fd]) sphere(pip_radius); translate([0, ps, -fd]) sphere(pip_radius); translate([0, -ps, -fd]) sphere(pip_radius); translate([-ps, ps, -fd]) sphere(pip_radius); translate([-ps, -ps, -fd]) sphere(pip_radius); }